Extended voluntary running inhibits exercise-induced adult hippocampal progenitor proliferation in the spontaneously hypertensive rat.
نویسندگان
چکیده
Previous work has shown that voluntary running increases cell proliferation and neurogenesis in the dentate gyrus of the adult hippocampus. Here we report that long-term running for 24 days results in a down-regulation of hippocampal progenitor proliferation to one-half the level of nonrunning controls compared with a fivefold increase in progenitor proliferation seen after 9 days of voluntary running (short-term running). The negative effects seen on proliferation after 24 days of running were prevented by restricting daily running distances (by 30-50%) during 24 days. Long-term running for 24 days increases the response of the hypothalamic-pituitary-adrenal axis, with an increase in adrenal gland weight and increased plasma corticosterone levels, as well as decreased thymus weight, indicating a stress response as a possible mediator of decreased progenitor proliferation. Furthermore, the negative effects seen on the observed stress response after 24 days of running were prevented by restricting daily running distance. Short-term running did not alter these stress parameters compared with nonrunning controls. However, it increased phosphorylated cyclic AMP response element binding protein (pCREB) in the dentate gyrus, an increase that was not seen in nonrunning controls or after 24 days of running. Taken together, these data suggest that voluntary running does not always enhance proliferation and that the decrease in progenitor proliferation seen in long-term running is possibly mediated by mechanisms involving a stress response in the animal. However, a moderate level of long-term running was able to prevent the negative stress-related changes seen in unrestricted long-term running.
منابع مشابه
Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging
Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and ...
متن کاملMaternal Voluntary Exercise during Pregnancy Enhances the Spatial Learning Acquisition but not the Retention of Memory in Rat Pups via a TrkB-mediated Mechanism: The Role of Hippocampal BDNF Expression
Objective(s): The effect of maternal voluntary exercise on hippocampal BDNF level in rat offspring was studied. In addition, the possible role of hippocampal BDNF receptors in maternal exercise induced enhancement of learning in the rat pups was investigated. Materials and Methods: Pregnant rats have been randomly assigned to sedentary control or voluntary exercise groups. Each of the exerc...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملThe Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats
Objective PCOS is the most frequent female endocrine disorder, affecting 5%-10% of women, is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and CYP19 (aromatase) mRNA in the ovary of EV-induced PCOS rat model and the effect of the treadmill and running w...
متن کاملThe Protective Effect of Voluntary Exercise on the Hippocampal Cerebral Dopamine Neurotrophic Factor Level against Intraventricular Injection of 6-hydroxydopamine in Rats
Background & Aims: The purpose of this research was to study the protective effect of pretreatment with a voluntary exercise on hippocampal level of cerebral dopamine neurotrophic factor (CDNF) after damage induced by intraventricular injection of 6–hydroxydopamine (6-OHDA) in rats. Methods: In this experimental study, 24 Wistar rats were randomly divided into 4 groups of healthy control, healt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005